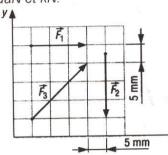
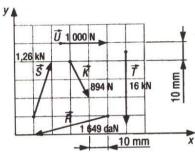
SCIENCES DE L'INGENIEUR


Exercices
CORRECTION
FC.01

Modéliser et représenter le réel

Forces & moments

Exercice 1: L'échelle utilisée pour représenter les forces est 1 mm pour 20 N.

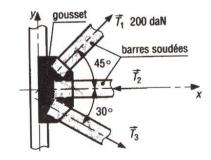

- Déterminer les modules des forces $\overrightarrow{F_1}, \overrightarrow{F_2}, \overrightarrow{F_3}$ ci-dessous.
- Ecrire ces modules en Newtons, daN et kN.

 $F_1 = 300 \, \text{N} = 30 \, \text{deN} = 0.3 \, \text{kN}$ $F_2 = 340 \, \text{N} = 34 \, \text{deN} = 0.34 \, \text{kN}$ $F_3 = \sqrt{300^2 + 300^2} = 424 \, \text{N}$ $F_3 = 42.4 \, \text{deN} = 0.424 \, \text{kN}$

Exercice 2: L'échelle utilisée pour représenter les forces ci-dessous est 1 mm pour 40 daN.

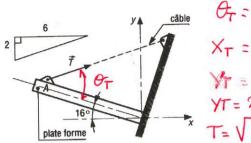
Compte tenue de cette échelle, le tracé des différentes forces est-il correct ?

U = 960 N T = 1440 N $K = \sqrt{400^2 + 800^2} = 894,4 \text{ N}$ $S = \sqrt{1200^2 + 400^2} = 1,26 \text{ kN}$ $R = \sqrt{400^2 + 1600^2} = 164,9 \text{ deN}$


Exercice 3:

- Déterminer les composantes X_{T1} et Y_{T1} de la tension $\overrightarrow{T1}$ de la barre $\underline{1}$.
- Déterminer la composante Y_{T3} et le vecteur force $\overrightarrow{T3}$ sachant que X_{T3} a pour module 100 daN.
- Déterminer $\overrightarrow{T2}$ sachant que $X_{T1} + X_{T2} + X_{T3} = 0$.

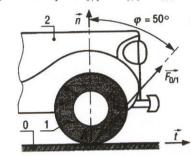
XT1 = T1 6545 = 141,4 deN YT1 = T1 Sin 45 = 141,4 deN


 $100 = T_3 \cos 30 = T_3 = \frac{100}{\cos 30}$ $1 = 100 \cos 30 = T_3 = \frac{100}{\cos 30}$

$$XT_2 = -141, 4 - 115, 5$$

 $XT_2 = -256, 9$
 $T_2 = XT_2 = -256, 9$

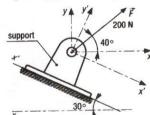
Exercice 4:


- Déterminer les caractéristiques du vecteur \overrightarrow{T} .
- Sachant que la composante X_T de la tension \vec{T} du câble en A est de 90 daN, déterminer la composante Y_T et le module de \vec{T} .

 $G_T = \tan^{-1}\left(\frac{2}{6}\right) = 18.43^{\circ}$ $X_T = 90$ of $\tan \theta = \frac{YT}{XT}$ $Y_T = X_T \tan \theta = 90. \tan 18.43$ $Y_T = 29.99 = 30$ $T = \sqrt{90^2 + 30^2} = 94.87$

Exercice 5 : L'action exercée par la route $\underline{0}$ sur la roue motrice $\underline{1}$ est schématisée par le vecteur $\overline{F_{0/1}}$. L'effort normal $\overline{N_{0/1}}$ porté par \overline{n} a pour valeur 400 daN.

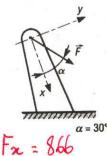
• Déterminer $\overrightarrow{F_{0/1}}$ et $\overrightarrow{T_{0/1}}$ (suivant \overrightarrow{t}) sachant que $\overrightarrow{F_{0/1}} = \overrightarrow{N_{0/1}} + \overrightarrow{T_{0/1}}$.

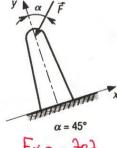


400 = Fo/1. Cos & = Fo/1. Cos 50 Fo/1 = 400 = 622,3 deN

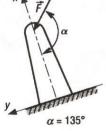
Toli = 622,3 Sin So = 476,71 den

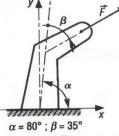
Exercice 6 :


• Déterminer les composantes de la force \vec{F} par rapport aux repères (x, y) et (x', y').



XFx' = 200.60s70 = 68,40YFy' = 200.8in70 = 187,94

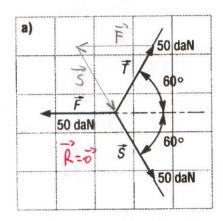

Exercice 7:


• Ecrire les composantes X_F et Y_F des forces \overrightarrow{F} indiquées en fonction du module et des angles α et β . $\|\overrightarrow{F}\| = 1000N$ dans les quatre cas.

$$F_{x=}$$
 - tot
 $F_{y=}$ - tot

Exercice 8:

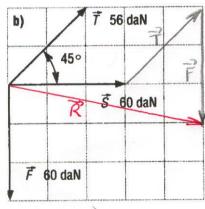
• Définir les caractéristiques des forces $\overrightarrow{T_1}$ et $\overrightarrow{T_2}$.


Déterminer la résultante \vec{R} de $\vec{T_1}$ et $\vec{T_2}$ agissant sur le politer en \vec{A} . (Méthode graphique et analytique)

- 7		1	7	H	
T ₁	A	3°°	7	60 den	
T2	Α	45°	R	400bN	

ei	13 agissam sur le ponter en A. Memode grapmque et analytique).
	Rx = T1x + T2 x = 60 los 30 - 40 los 45
	7 = 51,96-28,28 = 23,67
	40 dan Ry = Tay + Tzy = 60 sin 30 + 40 sin 45
	paller $= 30 + 28,28 = 58,28$
	(2 90
	$R = \sqrt{R_x^2 + R_y^2} = \sqrt{2367_+^2} 5828^2 = 62,90$
	2 m day

Exercice 9:


• Pour les trois cas proposés, déterminer la résultante des trois forces \vec{F} , \vec{T} et \vec{S} . (Méthode graphique en face de chaque figure, méthode analytique à part).


$$R_{x} = T_{x} + S_{x} + F_{x} = 50 \cos 60 + 50 \cos 60 + 50 = 0$$

$$R_{y} = T_{y} + S_{y} + F_{y} = 50 \sin 60 - 50 \sin 60 = 0$$

$$R_{z} = 0$$

$$R_x = T_x + S_x + F_x = 56 \cos 45 + 60 = 99,59$$

 $R_y = T_y + S_y + F_y = 56 \sin 45 - 60 = -20,40$
 $R = \sqrt{39,59^2 + 20,4^2} = 101,66$

Exercice 10:

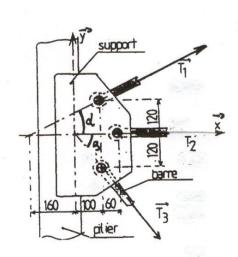
Compléter le tableau ci-dessous et représenter graphiquement les vecteurs forces aux échelles indiquées. Préciser les valeurs des composantes pour chaque vecteur force.

tirant 3

Vecteurs forces	Echelle adoptée	Longueur du vecteur tracé à son échelle	Direction du support par rapport à l'axe horizontal	Coord X_F	onnées Y_F	Module		ors des osantes Y_F
\vec{T}	1 mm→4 N	Somm	90°	0	<0	200 N	0	-200
\vec{A}	1 mm→20 daN	57mm	30°	>0	>0	1140 daN	987,3	570
\overrightarrow{R}	1 mm→5 N	60 mm	45°	<0	<0	300 N	-212,1	-212,1
\overrightarrow{M}	1 mm→7 daN	75 mm	135°	>0	<0	525 dan	371,2	-371,2
\overrightarrow{D}	1 mm→60 kN	125 mm	150°	<0	>0	7500 KN	-6495	3750

Exercice 11:

• Ecrire les composantes suivant les directions x et y des différentes forces.


• Oue peut-on dire de la somme des trois forces suivant les différentes directions?

- Déterminer les angles α et β.
- Effectuer les projections orthogonales des vecteurs $\overrightarrow{T_1}$, $\overrightarrow{T_2}$ et $\overrightarrow{T_3}$ sur les axes \overrightarrow{x} et \overrightarrow{y} .
- Effectuer la somme vectorielle : $\overrightarrow{T_1} + \overrightarrow{T_2} + \overrightarrow{T_3}$ graphiquement puis analytiquement.

$$\alpha = \tan^{-1}\left(\frac{120}{260}\right) = 24.77$$

$$\beta = \tan^{-1}\left(\frac{120}{100}\right) = 50.19$$

$$T_{AX} = 5.6324.77 = 4.53$$

 $T_{AY} = 5.50024.77 = 2.09$

$$T_{4} \times + T_{2} \times + T_{3} \times = 37,09$$

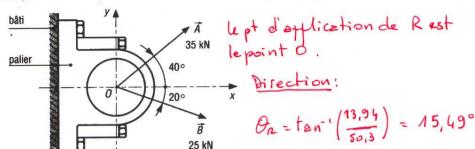
 $T_{4} \times + T_{2} \times + T_{3} \times = -0,98$

€F/x= 3041,2-3037,31=3,89

Conclusion 1

2F/y=1520,3+1184,2-2700=4,5

$$S = T_1 + T_2 + T_3$$

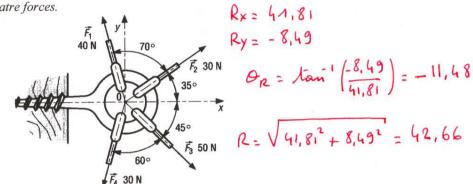

$$S = \sqrt{37,09^2 + 0,98^2}$$

$$S = 37,10$$

Exercice 13: Le palier à roulement proposé est soumis aux actions A et B.

• Calculer les composantes horizontales et verticales des forces \vec{A} et \vec{B} .

Déduire la résultante des deux forces.

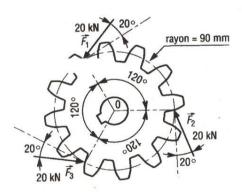


Exercice 14: $\overrightarrow{F_1}$, $\overrightarrow{F_2}$, $\overrightarrow{F_3}$ et $\overrightarrow{F_4}$ schématisent les actions exercées par la tête de la vis.

Déterminer la résultante des quatre forces.

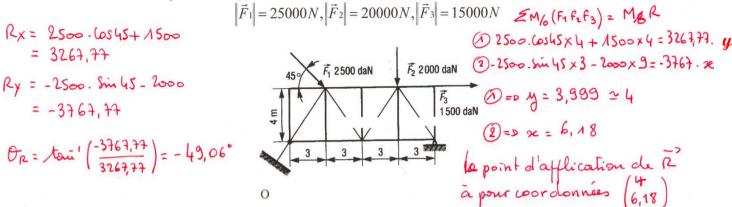
$$F_3$$
 $\begin{cases} F_x = 50 \text{ (as 45 = 35,35)} \\ F_y = -50 \sin 45 = -35,35 \end{cases}$

$$F_4$$
 $\begin{cases} f_x = -30 & 6575 = -7.76 \\ F_y = -30 & 5in 75 = -28.98 \end{cases}$

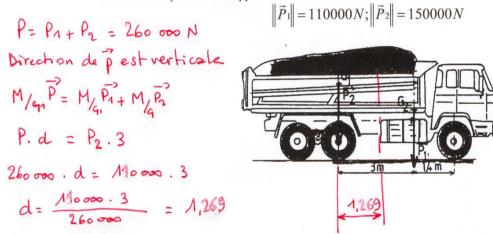


Exercice 15: Les forces \vec{F}_1 , \vec{F}_2 , \vec{F}_3 schématisent les actions exercées par d'autres roues dentées.

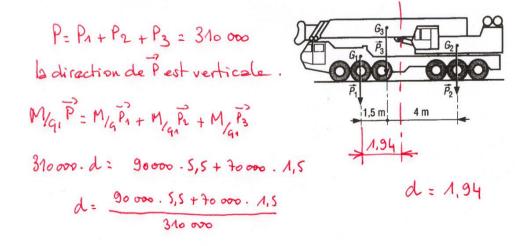
Déterminer la résultante des trois forces.


Calculer le moment résultant en O des trois forces.

$$\|\vec{F}_1\| = \|\vec{F}_2\| = \|\vec{F}_3\| = 20000N$$

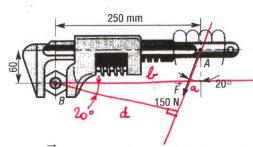

Exercice 16: Les forces \vec{F}_1 , \vec{F}_2 , \vec{F}_3 schématisent les actions exercées sur la structure en treillis.

- Déterminer la résultante des trois forces.
- Déterminer l'angle du support de la résultante.
- Déterminer la position du support de la résultante (Ecrire la somme des moments par rapport au point O).


Exercice 17: Le poids du camion à vide est schématisé par \vec{P}_1 et le poids du matériau contenu dans la benne par \vec{P}_2

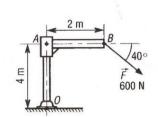
- Déterminer la résultante des deux forces.
- Déterminer la position du support de la résultante.

Exercice 18: Le poids de la partie camion est schématisé par $\|\vec{P}_1\| = 150000N$, $\|\vec{P}_2\| = 90000N$ le poids du corps de la grue et $\|\vec{P}_3\| = 70000N$ le poids de la flèche téléscopique.


- Déterminer la résultante des trois forces.
- Déterminer la position du support de la résultante.

Exercice 19: La force \vec{F} schématise l'action de serrage exercée par l'opérateur.

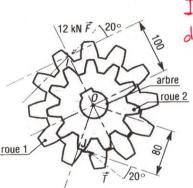
• Calculer le moment en B (« couple » de serrage sur l'écrou) de la force \overrightarrow{F} .


Colord de a:
$$\frac{1}{100}$$
 tan $\frac{20}{100} = \frac{a}{60}$ $\frac{a}{100} = \frac{a}{100}$ $\frac{a}{100} = \frac{a}{100} =$

Calcul de d: d: b. cos 20 d: 228,16. cos 20 d: 214,4 MB = - F. d = 150. 214,1 = 32160 mm N Soit MB: 32,16 m N

Exercice 20:

• Déterminer le moment en O de la force \overrightarrow{F} agissant sur le point B de la potence.



$$M_{/8}\vec{F} = M_{/8}\vec{F}_{x} + M_{/8}\vec{F}_{y}$$

 $M_{/8}\vec{F} = F_{x} \cdot L + F_{y} \cdot 2$
 $= 459,63 \times L + 385,67 \times 2$
 $= 1067,18 \text{ mN}$

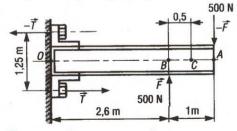
Exercice 21: Les forces \vec{F} et \vec{T} , appliquées en I et J, schématisent les actions mécaniques exercées par d'autres roues dentées.

- Calculer le moment en O de la force \overrightarrow{F} .
- A partir de quelle valeur la force \vec{T} équilibre-t-elle le couple moteur engendré par \vec{F} ?

$$M_{lo}F = M_{lo}F + M_{lo}F$$
 $M_{lo}F = 0$
 $M_{lo}F = 12 \cos 20 \cdot 100 = 1027,63$
 $M_{lo}F = T \times 80 \cos 20$

JI Faut: M₁₀T = M₁₀F

d'on M27,63 = Tx 80 cos20


T= M27,63 = 14,999

T= 15 kN

Exercice 22:

- Déterminer le moment résultant en O exercé par le couple de force \overrightarrow{F} et $-\overrightarrow{F}$.
- Calculer le moment en A, B et C de la force \overrightarrow{F} .
- Quelle doit être la valeur de T pour que le couple engendré par les deux forces puisse équilibrer le couple précédent ?

$$M_0 = M_{10}F + M_{10}F$$
 $M_0 = f. 2,6 - F. 3,6$
 $M_0 = -11 \times 500$
 $M_0 = -800 \text{ mN}$
 $M_{10}F = -F. 1 = -500$
 $M_{10}F = 0$
 $M_{10}F = 0$

$$M_0 = M_0 T + M_0 T = 0 - 800 = -T.0,625 - T.0,625$$

=P $T = \frac{800}{4,25}$
 $T = 640 \text{ mN}$

Exercice 23 : Le rayon R d'enroulement de la courroie sur la poulie est de 100 mm, \vec{T} et \vec{t} schématisent les efforts de tension.

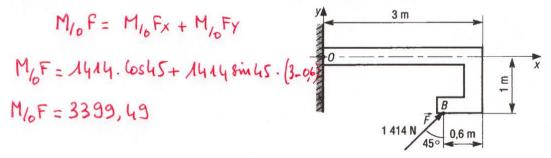
- Calculer le moment résultant en A des forces.
- Déduire le couple disponible sur l'arbre de transmission.

Exercice 24: Le couple transmis par l'arbre moteur au foret est $C = 40 \, Nm$.

• Déduire les efforts de coupe F exercés sur les trois lèvres.

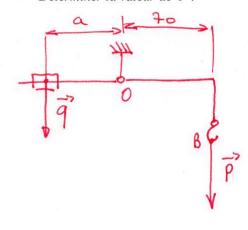
$$C = 3. \text{ M/oF}$$

$$C = 3. \text{ F. 0.02}$$


$$F = \frac{40 \text{ Nm}}{0.06} = P = 666.6 \text{ N}$$

$$C = 3. \text{ F. 0.02}$$

$$OA = 08 = 0C = 20 \text{ mm}$$


Exercice 25:

• Calculer le moment en O de la force \overrightarrow{F} agissant au point B.

Exercice 26: Une balance romaine se compose d'un balancier $\underline{2}$ articulé en O sur un crochet $\underline{1}$ lié à un support fixe et d'une ma d'équilibrage mobile $\underline{3}$ (a variable) de poids q=5 daN. La masse à peser, poids \overrightarrow{P} , est suspendue en B par l'intermédiaire d'un crochet 4. a=70 cm.

• Déterminer la valeur de \overrightarrow{P} .

$$M_{6}\vec{q} + M_{6}\vec{P} = \vec{0}$$

 $q.a - P.70 = 0$
 $P = \frac{5a}{70}$